A Germanium-68/Gallium-68 Generator is a device used to extract the positron-emitting isotope 68Ga of gallium from a source of decaying germanium-68. The parent isotope 68Ge has a half-life of 271 days and can be easily utilized for in-hospital production of generator produced Ga-68. Its decay product gallium-68 (with a half-life of only 68 minutes, inconvenient for transport) is extracted and used for certain positron emission tomography nuclear medicine diagnostic procedures, where the radioisotope's relatively short half-life and emission of positrons for creation of 3-dimensional PET scans, are useful.
Video Gallium-68 generator
Parent isotope (Ge-68) source
The parent isotope germanium-68 is the longest-lived (271 days) of the radioisotopes of germanium. It has been produced by several methods. In the U.S., it is primarily produced in proton accelerators: At Los Alamos National Laboratory, it may be separated out as a product of proton capture, after proton irradiation of Nb-encapsulated gallium metal. At Brookhaven National Laboratories, 40 MeV proton irradiation of a gallium metal target produces germanium-68 by proton capture and double neutron knockout, from gallium-69 (the most common of two stable isotopes of gallium). This reaction is: Ga-69(p,2n)Ge-68.
A Russian source produces germanium-68 from accelerator-produced helium ion (alpha) irradiation of zinc-66, again after knockout of two neutrons, in the nuclear reaction Zn-66(?,2n)Ge-68.
Maps Gallium-68 generator
Mechanism of generator function
When loaded with the parent isotope germanium-68, these generators function similarly to technetium-99m generators, in both cases using a process similar to ion chromatography. The stationary phase is either metal-free or alumina, TiO2 or SnO2, onto which germanium-68 is adsorbed. The use of metal-free columns allows direct labeling of Ga-68 without prepurification, hence making production of gallium-68-radiolabeled compounds more convenient. The mobile phase is a solvent able to elute (wash out) gallium-68 (III) (68Ga3+) after it has been produced by electron capture decay from the immobilized (absorbed) germanium-68.
Currently, such Ga-68 (III) is easily eluted with a few mL of 0.05 M, 0.1 M or 1.0 M hydrochloric acid from generators using metal-free tin dioxide or titanium dioxide adsorbents, respectively, within 1 to 2 minutes. With generators of tin dioxide and titanium dioxide-based adsorbents, there remains more than an hour of pharmaceutical preparation to attach the gallium-68 (III) as a tracer to the pharmaceutical molecules DOTATOC or DOTA-TATE, so that the total preparation time for the resulting radiopharmaceutical is typically longer than the Ga-68 isotope half-life. This fact requires that these radiopharmaceuticals be made on-site in most cases, and the on-site generator is required to minimize the time losses.
Indications for gallium-68 PET scanning
Gallium 67 citrate salt imaging is useful for imaging old or sterile abscesses, and while Gallium 68 is useful in direct tumor imaging, especially leukocyte-derived malignancies and prostate cancer metastases.
See also
- Gallium-67 scan
- Isotopes of germanium
- Positron emission tomography
- Technetium-99m generator
References
External links
- [1] M.D. Anderson article on automated synthesis of tracer molecules from gallium-68 in as little as 20 minutes, for PET scan uses.
Source of the article : Wikipedia